A comprehensive guide to regression analysis covering both continuous and discrete data, tailored for social science students involved in quantitative research.
1. Basic statistical concepts
2. Simple linear regression
- Basics of Simple Linear Regression
- Analysis of Variance
- The Lack of Fit F-test
- Correlation Coefficient
- Prediction
- R Example
3. Multiple linear regression
- Basics of Multiple Linear Regression
- Hypothesis test in MLR
- Data Transformation
- Interactions & Confounding
- R Example
4. Regression diagnosis
5. Logistic regression
6. Generalized linear models
7. Time series
References
- [👩🏫 Course] 回归分析(台湾交通大学)
- [👩🏫 Course] STAT 501: Regression Methods
- [📖 Book] Montgomery, D.C., Peck, E.A., Vining, G.G. (2012). Introduction to Linear Regression Analysis (5th Edition). Wiley. (ILRA)
- [📖 Book] 谢宇. (2013). 回归分析(第2版). 社会科学文献出版社.
- [📖 Book] 唐启明. (2012). 量化数据分析. 社会科学文献出版社.